
Overview of Deep Learning for
NLP

Natalie Parde

UIC CS 421

Many modern NLP
approaches are implemented
using deep learning.

Natalie Parde - UIC CS 421 2

How does deep learning work?

Input Output

Natalie Parde - UIC CS 421 3

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this
representation do not correspond to specific, known
attributes

Word2Vec
GloVe

fasttext

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

Natalie Parde - UIC CS 421 4

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this
representation do not correspond to specific, known
attributes

• Structure of the deep learning model is
determined at least partially by a hyperparameter
tuning process
• Many experiments will be run using different

hyperparameter combinations to determine what
leads to the best performance on the validation data

Natalie Parde - UIC CS 421 5

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation

• In most cases, the dimensions within this representation
do not correspond to specific, known attributes

• Structure of the deep learning model is determined
at least partially by a hyperparameter tuning process

• Many experiments will be run using different
hyperparameter combinations to determine what leads to
the best performance on the validation data

• Output is task-dependent

• Can be a class label, a number, or a string of generated
text

Natalie Parde - UIC CS 421 6

Common Themes across Deep Learning
Approaches
• Input is typically a dense vector representation
• In most cases, the dimensions within this representation

do not correspond to specific, known attributes

• Structure of the deep learning model is determined
at least partially by a hyperparameter tuning process
• Many experiments will be run using different

hyperparameter combinations to determine what leads to
the best performance on the validation data

• Output is task-dependent
• Can be a class label, a number, or a string of generated

text

• Training can be performed end-to-end
• The model is trained to predict the target output directly,

rather than through pipelined components

Natalie Parde - UIC CS 421 7

Despite these
common

themes, deep
learning

models are
implemented in
many different

ways!

• They may vary in how they:

• Handle prior context

• Draw inferences from the data

• Pass data between layers

• These variations make different kinds of
deep learning models work better for
different tasks

Natalie Parde - UIC CS 421 8

This
Week’s
Topics

Natalie Parde - UIC CS 421 9

Tuesday

Popular Deep Learning
Architectures
Pretraining, Finetuning,
and Prompting

Thursday

Reproducibility Workshop

This
Week’s
Topics

Natalie Parde - UIC CS 421 10

Tuesday

Popular Deep Learning
Architectures
Pretraining, Finetuning,
and Prompting

Thursday

Reproducibility Workshop

Popular Deep Learning Architectures in
Contemporary NLP
• Recurrent Neural Networks

• Convolutional Neural Networks

• Transformers

Natalie Parde - UIC CS 421 11

Recurrent Neural Networks (RNNs)

• General premise:

• Deep learning models should be making decisions for sequential input based on decisions that
have already been made at earlier points of the sequence

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for recurrent neural networks:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer
+ a vector of numbers representing the layer’s output at the previous timestep

Natalie Parde - UIC CS 421 12

Structure of Single-Unit RNN Layer

xt

Current input

Natalie Parde - UIC CS 421 13

Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Natalie Parde - UIC CS 421 14

Structure of Single-Unit RNN Layer

xt ht

Current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 421 15

Structure of Single-Unit RNN Layer

xt ht yt

Current input Output for current input
Information from xt

Information from xt-1 (activation
value from previous input)

Natalie Parde - UIC CS 421 16

Why is this
useful for NLP
problems?

• Most data for NLP tasks is inherently
sequential!

• Making use of sequences using feedforward
neural networks requires:

• Fixed-length context windows

• Concatenated context vectors

• This limits the model’s abilities, and prevents it
from considering variable-length context

Natalie Parde - UIC CS 421 17

There are many popular variations of RNNs.

• “Standard” RNNs are often referred to informally as vanilla RNNs

• Some RNN architectures are modified to specifically improve the model’s ability to
consider long-term context

• Long short-term memory networks (LSTMs)

• Gated recurrent units (GRUs)

xt ht yt

Natalie Parde - UIC CS 421 18

Long Short-Term Memory Networks (LSTMs)

• Specialized RNN units that incorporate
gating mechanisms to remove
information that is no longer needed
from the context, and add information
that is anticipated to be of use later

• Gating mechanisms include:

• Forget gate: Should we erase this
existing information from the context?

• Add gate: Should we write this new
information to the context?

• Output gate: What information should
be leveraged for the current hidden
state?

9/25/23

!!"#

"!

ℎ!"#

$ ⨀

Forget

$

tanh
⨀ +

Add

$

tanh
⨀

Output

ℎ!

!!

Natalie Parde - UIC CS 421 19

Gated Recurrent Units (GRUs)

• Also utilizes gating mechanisms to
manage contexts, but uses a
simpler architecture than LSTMs

• Only two gates:

• Reset gate: Which elements of
the previous hidden state are
relevant to the current context?

• Update gate: Which elements of
the intermediate hidden state
and of the previous hidden state
need to be preserved for future
use?

9/25/23

!!

ℎ!"#

#
tanh

⨀

+

Reset Update

ℎ!

Natalie Parde - UIC CS 421 20

Overall, comparing inputs and outputs for
some different types of neural units….

x

h

xtht-1

ht

xtht-1

htct

ct-1 xtht-1

ht

Feedforward RNN LSTM GRU

Natalie Parde - UIC CS 421 21

When to use LSTMs vs. GRUs?

• Computational efficiency: Good for scenarios in which you need to train
your model quickly and don’t have access to high-performance
computing resources

Why use GRUs instead of LSTMs?

• Performance: LSTMs generally outperform GRUs at the same tasks

Why use LSTMs instead of GRUs?

Natalie Parde - UIC CS 421 22

Bidirectional
Models

• All RNN units can be combined
with one another in the same
way that feedforward units can
be combined

• Layers of vanilla RNN units

• Layers of LSTM units

• Layers of GRU units

• These layers can also be
combined to implement
bidirectional architectures that
process input both from
beginning to end and from end
to beginning

Natalie Parde - UIC CS 421 23

Bidirectional RNNs

RNNNatalie ran to LC C006

Natalie Parde - UIC CS 421 24

Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie

Natalie Parde - UIC CS 421 25

Bidirectional RNNs

RNN

RNN

Natalie ran to LC C006

C006 LC to ran Natalie

+
ℎ!

ℎ!
"

ℎ!#

Natalie Parde - UIC CS 421 26

Sequence Classification with a Bidirectional
RNN

recurrent RNN

neural RNN

network RNN
FNN

MACHINE_LEARNING

network RNN

neural
RNN

recurrent
RNN

+
Natalie Parde - UIC CS 421 27

Convolutional Neural Networks (CNNs)

• General premise:

• Deep learning models should be making decisions based on local regions of the context

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for convolutional neural networks:

• Input to a layer is the output of convolutional operations performed on subsets of the
output from the previous layer

Natalie Parde - UIC CS 421 28

In NLP, convolutions are typically performed on
entire rows of an input matrix, where each row
corresponds to a word.

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Stride size = 1
Natalie Parde - UIC CS 421 29

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Feature Map

Natalie Parde - UIC CS 421 30

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421 Feature Map

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 31

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421 Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 32

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

We apply convolutions with specific region (kernel) and
stride sizes to an input matrix, and end up with a feature
map.

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 33

Typically, we learn multiple feature maps and then reduce the
dimensionality of the learned feature maps by pooling (e.g., taking the
average or maximum) subsets of their values.

• This is done to:

• Further increase efficiency

• Improve the model’s invariance to small changes in the input

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Natalie Parde - UIC CS 421 34

The output from pooling layers is typically then passed along
as input to one or more feedforward layers.

Input Output

Natalie Parde - UIC CS 421 35

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

I

love

waking

up

early

for

CS

421
Feature Map

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

I

love

waking

up

early

for

CS

421

Kernel size = 2x5
Stride size = 2

Why use CNNs for an NLP task?

• Originally designed for image classification!

• However, offers unique advantages for NLP tasks:

• Extracts meaningful local structures from input

• Increases efficiency of the training process relative to feedforward neural networks

Natalie Parde - UIC CS 421 36

Transformers

• General premise:

• Deep learning models don’t need to wait to process items one after the other to incorporate
sequential information

• Classic feedforward neural network:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer

• Modification for recurrent neural networks:

• Input to a layer is a vector of numbers representing the outputs of all units in the previous layer
+ a vector of numbers representing the layer’s output at the previous timestep

• Modification for Transformers:

• Input to a feedforward layer is the output from a self-attention layer computed over the entire
input sequence, indicating which words in the sequence are most important to one another

Natalie Parde - UIC CS 421 37

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q$ = 𝐖𝐐𝐱$
• k$ = 𝐖𝐊𝐱$
• v$ = 𝐖𝐕𝐱$

Natalie Parde - UIC CS 421 38

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
visqis

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 39

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q$ = 𝐖𝐐𝐱$
• k$ = 𝐖𝐊𝐱$
• v$ = 𝐖𝐕𝐱$

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score$(= 𝐪$. 𝐤(

• 𝛼$(=
)*+(score!")

∑#$%
&)*+(score!#)

Natalie Parde - UIC CS 421 40

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis
𝛼!" = softmax score 𝑥!, 𝑥"

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 41

Self-Attention

1. Generate key, query, and value embeddings for each element of the input vector 𝐱
• q+ = 𝐖𝐐𝐱+
• k+ = 𝐖𝐊𝐱+
• v+ = 𝐖𝐕𝐱+

2. Compute attention weights ⍺ by applying a softmax activation over the element-wise
comparison scores between all possible query-key pairs in the full input sequence

• score+/ = 𝐪+ - 𝐤/

• 𝛼+/ =
012(score!")

∑#$%
& 012(score!#)

3. Compute the output vector 𝐲! as the attention-weighted sum of the input value vectors v

• 𝐲𝒊 = ∑/789 𝛼+/v/

Natalie Parde - UIC CS 421 42

Bidirectional Self-Attention Layer

is

CS

421

is

the

greatest

Input

Self-Attention Computation

kis
vis

score 𝑥! , 𝑥" = 𝑞! ⋅ 𝑘"

qis
𝛼!" = softmax score 𝑥!, 𝑥"

𝑦! =<
"#!

𝛼!"𝑣"

k421

v421q421

kCS

vCS
qCS

kthe
vtheqthe

kgreatest
vgreatestqgreatest

Natalie Parde - UIC CS 421 43

Transformer
Blocks

• Transformers are implemented by
stacking one or more blocks of the
following layers:

• Self-attention layer

• Normalization layer

• Feedforward layer

• Another normalization layer

• Some of these layers have residual
connections between them even
though they do not immediately
precede or proceed one another

Input

Self-Attention Layer

Add and N
orm

alize

Feedforw
ard Layer

Add and N
orm

alize

Output

Natalie Parde - UIC CS 421 44

This
Week’s
Topics

Natalie Parde - UIC CS 421 45

Tuesday

Popular Deep Learning
Architectures
Pretraining, Finetuning,
and Prompting

Thursday

Reproducibility Workshop

Bidirectional Encoder Representations from
Transformers (BERT)
• The most popular Transformer-based architecture for NLP tasks

• Implemented using:

• 12 Transformer blocks, each of which have 12 attention heads in each self-attention layer

• 768-dimensional hidden layers

• A subword vocabulary of 30,000 tokens

• A fixed input length of 512 subword tokens

• Overall, this means that the model has 100,000,000 trainable parameters!

Natalie Parde - UIC CS 421 46

BERT is trained to perform two tasks.

• Masked language modeling
• Randomly select a subset of tokens from the training input and:

• Replace some of them with [MASK] tokens

• Replace some of them with other randomly sampled tokens

• Leave some of them unchanged

• For each sampled token, try to predict what the correct token is

Natalie Parde - UIC CS 421 47

Masked Language Modeling

After such a late night
working on my project,
it was hard to wake up
this morning!

After such a [MASK]
night working on my
project, it was hard to
wake up this driving!

After p1 such p2 a p3 [MASK] p4 night p5 working p6 on p7 my p8 project p9

…

this p16 driving p17

Bidirectional Transformer Encoder

late project morning

Natalie Parde - UIC CS 421 48

BERT is trained to perform two tasks.

• Masked language modeling
• Randomly select a subset of tokens from the training input and:
• Replace some of them with [MASK] tokens

• Replace some of them with other randomly sampled tokens

• Leave some of them unchanged

• For each sampled token, try to predict what the correct token is

• Next sentence prediction
• Predict whether pairs of sentences are actually adjacent to one another in text
• Prepend a [CLS] token to the pair of sentences

• Separate the two sentences using a [SEP] token

• Add segment embeddings to the model

• Assign a label based on the representation learned for the [CLS] token

Natalie Parde - UIC CS 421 49

Next Sentence Prediction

[CLS] p1 s1

…

Bidirectional Transformer Encoder

1

After such a late night
working on my project,
it was hard to wake up
this morning! I did
though, because I had
to give my project
presentation.

[CLS] After such a late
night working on my
project, it was hard to wake
up this morning! [SEP] I
did though, because I had
to give my project
presentation. [SEP]

After p2 such p3 a p4s1 s1 s1 presentationp30 s2 [SEP] p31 s2

Natalie Parde - UIC CS 421 50

The development of BERT was the catalyst for
an important shift in contemporary NLP.
• Training BERT was very time-consuming and resource-intensive, but it produced a

model that could be reused for many purposes

• Researchers began to consider task formulations in which they could finetune a
pretrained model for a new purpose, rather than training a smaller model for that
purpose from scratch

Rule-Based Era
• Prior to ~1990s

Statistical and (Early) Neural Era
• 1990s to 2010s

Pretrain and Finetune Era
• Late 2010s to present

Natalie Parde - UIC CS 421 51

Pretrain and Finetune Paradigm

• Intuition:

• If we take models that have been pretrained on massive datasets for other tasks, we can
finetune them for our specific task while also taking advantage of the information that was
learned during the pretraining process

• Popular pretrained model for this purpose: BERT

Natalie Parde - UIC CS 421 52

How does finetuning work?

• Take a large model that has already been trained for some other task

• Add a task head to the model

• Task-specific layer(s) that take the input representations from the pretrained model and
produce your desired output

• Update the parameters for the task head while ignoring or only minimally adjusting the
weights for the pretrained model

• This will require that you have supervised training data for your target task

Natalie Parde - UIC CS 421 53

Example: Finetuned Sarcasm Detector

[CLS] p1

Pretrained BERT

sarcasm

Natalie Parde - UIC CS 421 54

I’m p2 so p3 excited p4 about p5 the p6 winter p7 storm p8 warning p9

Why does this work?

• Pretraining on large datasets allows language models to
build high-quality representations facilitating general
language understanding

• In many cases, this knowledge can be reused across
many tasks
• Sentences are likely to have similar structure across many

language domains

• Common sense knowledge is likely to transfer across
problem settings

• Semantic relationships often hold across tasks

• Specialized tasks often have much less data available
than the tasks used to train large language models

• By finetuning an existing model to perform the specialized
task, we can retain the useful general language
information we’ve learned and use it to help us more
efficiently and effectively solve our specialized task

Natalie Parde - UIC CS 421 55

Generative Transformers

• Although we’ve so far examined Transformer models in settings where they are trained
(and potentially later finetuned) to predict specific labels, they can also be trained for
autoregressive language modeling purposes

• Given the sequence of words that have been generated so far, decide which word should
come next

• With autoregressive language modeling setups, we want to use causal (unidirectional)
Transformers rather than bidirectional Transformers

• Bidirectional Transformers trivialize the learning task too much

• We want self-attention to only be computed based on what has already been generated

Natalie Parde - UIC CS 421 56

Next
Word

Prediction

Next
Word

Prediction

Next
Word

Prediction

Autoregressive Generation

<s> Transformer generation

<s> generation Transformer is

<s> generation is Transformer fun

Natalie Parde - UIC CS 421 57

Recent advancements to generative Transformers
have also ushered in another new training paradigm.

• Fine-tuning pretrained models to perform new tasks works very well in many cases, but
it still requires that you have a reasonably large supervised training set for the target
task

• In some cases, we only have a very tiny amount of training data (or none at all) for our
target task

Rule-Based Era
• Prior to ~1990s

Statistical and (Early) Neural
Era
• 1990s to 2010s

Pretrain and Finetune Era
• Late 2010s to present

Pretrain and Prompt Era
• Early 2020s to present

Natalie Parde - UIC CS 421 58

Pretrain and Prompt Paradigm

• Intuition:

• If we take extremely large generative language models that have been pretrained on a wide
variety of language data, we can prompt them to produce labels or output for new tasks

• Popular pretrained model for this purpose: GPT

Here are two training instances:
Data: "Natalie was soooooo happy she had booked a 5 a.m.
flight.” Label: SARCASTIC
Data: “Natalie loved early morning flights because she could get
to her destination before brunch!” Label: NOT SARCASTIC.

Here is a test instance. Fill in the correct label:
Data: “Natalie was sooooooooooo excited to wait in an early
morning airport security line.” Label:

Transformer
SARCASTIC

Natalie Parde - UIC CS 421 59

How does prompting work?

• Take a large model that has already been trained to perform generative language
modeling

• Develop a set of prompt templates for your task

• Prompt templates can be manually or automatically constructed

• Develop an approach for answer engineering

• Build an answer space (set of possible answers that your model may generate) and map that
answer space to your desired outputs

• This can also be done manually or automatically using search techniques

• Format your input according to the relevant prompt template(s) and map the resulting
language model output to your desired target output

Natalie Parde - UIC CS 421 60

Why is this useful?

• Successful approaches using the pretrain and
prompt paradigm are able to perform few-shot
or even zero-shot learning for the target task

• Learning from few or no training examples

• This allows researchers to build models for
tasks that were previously inaccessible due to
extremely scarce resource availability

• Prompting also requires limited or no
parameter tuning for the base language model,
making it possible to develop classifiers more
efficiently

Natalie Parde - UIC CS 421 61

Which model should you use?

• Many approaches are now available for us to use when developing NLP systems,
ranging from early rule-based techniques to very recent prompt-based methods

• In general, with each new modeling era of NLP we have sacrificed some degree of
control and interpretability for increased performance

Rule-Based

• Complete control and
interpretability, but very
limited ability to
generalize

Statistical

• We have immediate
access to feature
values and weights and
can generalize a bit
more broadly, but we
require supervised
training data

Neural End-to-End

• We no longer know our
feature values or
weights, but we can
generalize more
broadly and we know
our exact inputs and
outputs

Pretrain and Finetune

• We are generalizing
from a wealth of broad
knowledge, although
we only know specific
data/task details
pertaining to our target
task

Pretrain and Prompt

• We don’t know exactly
how or why our model
is making its decisions,
but we achieve strong
performance and no
longer require
supervised training
data

Natalie Parde - UIC CS 421 62

Remember, deep learning isn’t necessarily the
best solution in all scenarios!
• Less interpretable

• Particularly important to consider when
dealing with sensitive tasks (e.g., classifying
health-related documents)

• Prompt-based approaches may generate
inaccurate output and present it confidently

• May overfit with very low-resource
problems

• May overcomplicate the solution
• In some cases, a naïve Bayes model may

work just as well as a complex deep learning
approach

Natalie Parde - UIC CS 421 63

Tools for
Implementing

Deep Learning
Systems

• Pretrained Language Models

• HuggingFace Model Hub:
https://huggingface.co/models

• Deep Learning Frameworks

• PyTorch: https://pytorch.org/

• TensorFlow: https://www.tensorflow.org/

• Prompt Tuning Frameworks

• OpenPrompt:
https://github.com/thunlp/OpenPrompt

Natalie Parde - UIC CS 421 64

https://huggingface.co/models
https://pytorch.org/
https://www.tensorflow.org/
https://github.com/thunlp/OpenPrompt

Summary:
Overview of
Deep Learning
for NLP

• Many different forms of deep learning are popular in modern NLP

• Recurrent neural networks directly encode temporal context into the network’s
computational units

• Convolutional neural networks increase efficiency by performing operations over
regions of input data

• Transformers calculate self-attention to encode temporal context for the full input in
a single step

• In many cases, we can build task-specific classifiers by fine-tuning large pretrained
models

• Recently, researchers have also started developing new approaches to prompt large
pretrained models for relevant output

• Although modern deep learning approaches work very well, they may sacrifice control
and interpretability for performance gains

• It is important to consider your research problem and data characteristics carefully
when determining how you will implement your solution

Natalie Parde - UIC CS 421 65

